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We have calculated the binding energy and ‘length’ of a quasi one-dimensional exciton in a
semiconductor quantum wire subjected to a magnetic field. The magnetic field causes these
quantities to have non-monotonic dependences on wire width. Below a critical width, the
binding energy decreases with increasing wire width as usual, but above this critical width the
opposite behavior is observed. This gives rise to a pronounced minimum in the binding
energy. A similar behavior gives rise to a pronounced maximum in the exciton length. These
features are explained by invoking the complementary roles of the electrostatic and magneto-
static confinement of the exciton.

( 1996 Academic Press Limited

1. Introduction

Quasi one-dimensional excitons and biexcitons in quantum wires are dirctly responsible for the giant
third order non-linear susceptibility v(3) in these systems. The large magnitude of v(3) is caused by the
increased binding energy of excitonic complexes due to one-dimensional confinement. A magnetic
field can further enhance the confinement, leading possibly to improved performance in non-linear
optics, specifically in low power and high density systems. Additionally, the field can act as an agent
to modulate the non-linear absorption/gain in quantum wires which opens up the possibility of
realizing externally tunable couplers, limiters, phase shifters, switches, etc.

Recently, Someya, Akiyama and Sakaki [1] reported the effect of an external magnetic field on
the exciton binding energy and radius in a GaAs quantum wire by measuring the photoluminescence
spectra and comparing them with those of quantum wells. They found that a magnetic field squeezes
the exciton wavefunction to a size that is far below what can be achieved in quantum wells. This is
consistent with our observation. We provide a detailed theoretical calculation which sheds light on
this effect.

This paper is organized as follows. In Section 2, the theory of a quasi 1D exciton subjected to a
magnetic field is developed rigorously within the framework of a two band model and perfect confine-
ment. Section 3 presents the results of the variational calculations of the binding energy and exciton
‘length’ followed by a discussion of the excitonic properties. Conclusions are given in Section 4.

2. Theory
2.1 Exciton binding energy

Let us consider a quantum wire as shown in the inset of Fig. 1 with infinite potential barriers located
at y\^L

y
/2 and z\^L

z
/2. A magnetic field of flux density B is applied along the z-direction.
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Fig. 1. Exciton binding energy in a GaAs quantum wire as a function of wire width L
y

for two different values
of wire thickness L

z
. No magnetic field is present. The binding energy decreases with increasing wire width

approaching the bulk value in sufficiently wide wires. The decrease is more rapid in the thicker wire because of
the weaker confinement along the thickness. The inset shows a wire with the various coordinate directions
defined.

For nondegenerate and isotropic bands, the Hamiltonian of a free Wannier exciton in this
system is given within the envelope-function approximation by
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where we have chosen the Landau gauge for the magnetic vector potential:

A?\([By,0,0) .

The quantities m
e,h

and x
e,h

, y
e,h

, z
e,h

are the effective masses and coordinates of electrons and holes,
respectively, M is the dielectric constant, V

conf
(y

e
, y

h
, z

e
, z

h
) is the confinement potentials for electrons

and holes along y and z directions.
For convenience, we replace x

e,h
-coordinates by the center-of-mass (X) and relative coordi-

nates (x). This is accomplished by using quantum mechanical definition of momentum operators and
taking into account that in a center-of-mass and relative coordinate system
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Even for this relatively simple Hamiltonian of eqn (2), no exact analytical solution of the
exciton wave function is possible. Therefore we adopt the standard variational approach [2–4]. Since
the Hamiltonian does not depend on X, P

X
is a good quantum number. Dropping the term associated

with P
X

we take the following trial wave function:
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where g
t
(x,g) is chosen to be the Gaussian-type ‘orbital’ function [6–8]:
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in which g is a variational parameter. The variables X
e,h

(Z
e,h

) are the z-components of the wave
functions which are not affected by the magnetic field. They are given by particle-in-a-box states
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The electron and hole wave functions along the y direction, /
e,h

(y
e,h

), are to be calculated numerically
when a magnetic field is present. This is done by solving the Schrödinger equation directly following
the prescription given in Ref. [11].

It is important to note that there are really two different cases of exciton quantization: (i) an
electron-hole droplet whereby the exciton is considered to be a particle by itself, and (ii) an entity
consisting of independently confined electron and hole. According to Ref. [9,10], the criterion for this
separation is L

y
, L

z
\3a*

B
, where a*

B
is the effective Bohr radius in the bulk. The trial wave function

(3) implicitly assumes the electron and the hole are independently confined along the y- and z-direc-
tions, which corresponds to the case

L
y
,L

z
\3a*

B
.

The wave function (3) is probably the simplest that can be chosen while still preserving the
principal features of the actual wave function. The results obtained with this trial function can be
checked ‘a posteriori’ by evaluating the zero-field binding energy and comparing it with binding
energy calculated by other methods or extracted from experimental data.

The wave function (3) involves the variational parameter g which is evaluated by minimizing
the expectation value of the Hamiltonian in Equation (2) (based on given trial wave functions) with
respect to g. Once this is accomplished, one can find the exciton binding energies and the exciton
length for different values of magnetic field and the wire width. The functional to be minimized can
be written as follows
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where df\dxdy
e
dy

h
dz

e
dz

h
. The integration of the last (Coulomb) term is carried out over a hyper-

rectangle X which has an infinite interval along the x direction and limited by ^L
y
/2 and ^L

z
/2

along y and z directions respectively. To obtain (6), we have made use of the boundary conditions
/
e,h

(^L
y
)\0 which allowed us to integrate some of the terms analytically using integration by parts.

Note that the expectation value of the non-Hermitean operator eB(y
e
/m

e
]y

h
/m

h
)p̂

x
(which arises in

the presence of a magnetic field) is identically zero for the chosen trial wave function which makes
the expectation value in (6) strictly real and shows that the trial wave function space is admissible.

Equation (6) allows us to treat the Coulomb interaction term exactly in its full 3D form
throughout the calculation, which is physically more realistic than the approach employed in our
previous (2D) exciton binding energy calculation [12].

Ground state exciton binding energies EX
B

can now be found using the relation

EX
B
\Ee1

conf
]Ehh1

conf
[minStDĤX DtT, (7)

where Ee1
conf

, Ehh1
conf

are the lowest electron and the highest heavy hole magneto-electric subband bot-
tom energies in a quantum wire measured from the bottom of the bulk conduction band and the top
of the bulk valence band. At the same time, the exciton length is simply g

opt
/21@4 where g

opt
is the

value of g that minimizes the expectation value in eqn (6).
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Fig. 2. The same results as in Fig. 2 in the present of a magnetic flux density of 10 tesla. There are pronounced
minima around a wire width of 400 Å. The magnetic length in this case is 96 Å.

3. Results and Discussion

In Fig. 1 we present the exciton binding energy as a function of L
y

(wire dimension along y direction)
for two values of L

z
(wire dimension along z direction) when no magnetic field is present. With

increasing values of L
y
, the binding energy rapidly decreases and begins to approach the bulk value

(about 5.5 meV for GaAs). The binding energy does not approach the 2D limit because confinement
along the z direction is not strong enough. In Fig. 2 we display the same results when a magnetic
flux density of 10 tesla is present. It is interesting to note that when a magnetic field is present, the
binding energy curves have a clearly resolved minima at LB400 Å. An explanation for this somewhat
surprising behavior is provided later. Figure 3 show the exciton length as a function of wire width.
Pronounced maxima at LB400 Å are seen corresponding to the minima in the binding energy.

Unfortunately, we cannot examine the behavior of the binding energy or the exciton length in
the limit L]O because our model does not contain any provision to make the transverse compo-
nents of the wavefunction to deform into atomic Slater orbitals. However, a direct comparison of
our results for zero magnetic field with those in Refs [6,13] shows excellent agreement.

Figure 4A and B shows the exciton binding energy as a function of the magnetic field for
different values of L

y
and L

z
. Binding energy increases with the magnetic field for all wire widths,

which is in qualitative agreement with the results obtained for 2D systems [14,15], except that while
the increase is sublinear in 2D systems, it is superlinear in 1D systems. This can be explained in two
different ways. A magnetic field squeezes the electron and hole wavefunctions along all directions
causing these states to condense into cyclotron (Landau) orbits whose radii shrink with increasing
magnetic fields. As long as the wire width W is comparable to the magnetic length or the lowest
cyclotron radius l (\Ih̄/eB), the additioal confinement induced by the magnetic field is not very
important and the geometric (i.e. the electrostatic confinement of the walls) confinement predomi-
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Fig. 3. Exciton length versus wire width at a magnetic flux density of 10 tesla. There are maxima around a wire
width of 400 Å corresponding to the minima in the binding energy shown in Fig. 2.

nates. It is only when W[l that the effect of the magnetic field becomes predominant. Therefore, a
wider wire will show a stronger dependence of the binding energies on the magnetic field. Another
way to explain the relation between the wire width and the sensitivity to the magnetic field is in terms
of the standard time-independent perturbation picture. The magnetic field perturbs the quantum wire
states, and the first order correction to the wave functions that correspond to the perturbed states is
given by the formula
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[E(0)
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, (8)

where E (0)
m

, w(0)
m

are the unperturbed energy eigenvalue and eigenfunction of the mth subband respect-
ively, DH@

mn
D is a perturbation matrix element due to the magnetic field. Since in the case of perfect

confinement
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2m
e,h
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it is easy to see that the perturbation decreases with decreasing wire width. Since it is this perturbation
that squeezes the exciton wave function, we see clearly that the squeezing is more effective in wider
wires. In other words, the wave function is softer and more ‘squeezable’ in wider wires which causes
the magnetic field effect to be more dominant in those wires. A very similar physics causes the hole
wave function to be perturbed more than the electron wave function in a quantum wire [12].

We can now revisit the pronounced minima in Fig. 2 and try to explain their physical origin.
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At small values of L
y
, the magnetic field is not very effective in squeezing the exciton wave function

since the geometric confinement predominates. Consequently, the binding energy decreases with de-
creasing geometric confinement or increasing wire width. At large values of L

y
, the geometric con-

finement becomes weak and yields the predominant role to the magnetic field induced confinement.
With increasing wire width, the magneto-static confinement becomes stronger since the wave function
becomes ‘softer’ and more squeezable. This causes the binding energy to reverse trend and increase
with increasing wire width resulting in the occurrence of a minimum. The same physics explains the
magnetic field dependence of the exciton radius as well.

4. Conclusion

In this paper, we have calculated the magnetic field dependence of the ground state exciton binding
energy and exciton radius in a GaAs quantum wire. Two important observations are that: (i) the
binding increases superlinearly with increasing magnetic field unlike in a quantum well where the
increase is sub-linear [15], and (ii) there are pronounced mimima in the binding energy (and corre-
sponding pronounced maxima in exciton length) as a function of wire width when a magnetic field
is present. To our knowledge, the existence of these extrema was never shown before. Occurrence of
these extrema has been explained in terms of the time-independent perturbation theory.
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